Proceedings of the International Geometry Center

ISSN-print: 2072-9812
ISSN-online: 2409-8906
ISO: 26324-2012


Some remarks concerning strongly separately continuous functions on spaces ℓ_p with p ∊ [1;+∞]

DOI: 10.15673/tmgc.v10i3-4.769 (eng)

  • Olena Karlova
  • Tomáš Visnyai

Abstract | Full Text: We give a sufficient condition on strongly separately continuousfunction f to be continuous on space ℓ_p for p ∊ 2 [1;+∞]. We prove theexistence of an ssc function f : ℓ_∞ → R which is not Baire measurable.We show that any open set in ℓ_p is the set of discontinuities of a stronglyseparately continuous real-valued function for p ∊ [1;+∞).


  • strongly separately continuous function
  • Baire classification